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1. I n t roduc t ion  

In this paper we develop the patchworking method for constructing algebraic 

curves with prescribed singularities in a given linear system on an algebraic 

surface. 

Our procedure originates in the Viro "gluing" method [22, 23, 24, 25, 26, 27] 

invented in 1979-80 for the construction of real algebraic non-singular hyper- 

surfaces with prescribed topology, and which provided a major breakthrough in 

Hilbert's 16th problem [8]. Later, it was modified for the construction of alge- 

braic curves with many prescribed singularities in the plane [14, 16] or on other 

algebraic surfaces [11, 18], and, more generally, hypersurfaces with prescribed 

singularities in smooth algebraic varieties [17], construction of polynomials with 

prescribed critical points [15, 16], vector fields with many limit cycles and pre- 

scribed singularities [9], and some other problems, for example, enumeration of 

singular curves [13, 19]. We should like also to mention that the patchworking 

construction appears to be useful in the symplectic setting as well [4, 10]. 

In general, the patchworking construction starts with a one-dimensional flat 

family X ~ (C, 0) of algebraic surfaces with an irreducible connected general 

fibre Xt, t ~ O, and reduced reducible central fibre X0, in which an algebraic 

curve Co is given. The construction produces a flat family Ct C Xt, t E (C, 0), 

of curves such that the curves Ct, t ~ 0, inherit some properties, say, singularity 

types, from the components of the given central curve Co. Topologically, a curve 

Ct, t ~ O, is glued up out of the components of Co sitting in distinct components 

of Xo. 

In the present paper we focus on the construction of families of curves Ct, 
which induce an equisingular (or equianalytic) deformation for the singular 

points of Co. This requirement can be reduced to the condition of the smooth- 

ness and transversality of certain equisingular (or equianalytic) strata, which in 

turn can be expressed in the form of HI-vanishing conditions for ideal sheaves 

of certain zero-dimensional schemes in X0. 

In the two examples of patchworking treated in [14, 16, 17] (and which we 

present in more detail in section 2.1) it was supposed that the components 

of the curve Co cross the intersection lines of the components of X0 at their 

non-singular points and transversally. In [2, 3] a version of the patchworking 

procedure has been used for the construction of nodal curves of surfaces in ]?3. 

In the latter situation, the components of Co were tangent up to some order 

to the intersection lines of the components of X0. Furthermore, in [2, 3] the 

deformation of such a singular point of Co is treated as a specific deformation of 



Vo[. 151, 2 0 0 6  PATCHWORKING SINGULAR ALGEBRAIC CURVES I 127 

a planar curve singularity of type Ak, and this is done by means of [1], which is 

rather technical. Our idea (which is developed in detail in [20]) is to reduce this 

problem to the transversal case, and then to use the patchworking procedure, 

Theorems 2.8 and 2.15. Namely we blow up such a singular point of Co and add 

a new component E to X0 so that the deformation of the (boundary) singular 

point of Co is represented as a patchworking of a singular curve in E. This 

approach generalizes, ill fact, to arbitrary singularities of Co along the intersec- 

tion lines of the components of Xo. We point out that in the general situation, 

these singularities of Co are no longer planar ones. Another novelty of our ap- 

proach (which is also presented in [20]) is that we can describe in a controlled 

way deformations of curves Co having multiple components. Again, the idea is 

to blow up along the multiple components and, adding new components to Xo 

and Co, represent this deformation as a patchworking of a curve with isolated 

singularities. We should mention that the purpose of the current paper is to 

develop the patchworking techniques in the most general setting. And most of 

the examples and applications are contained in the second part of the paper 

[20]. 
This paper is organized as follows: in section 2 we formulate the general 

patchworking procedure in Theorem 2.8 (weak version) and in Theorem 2.15 

(strong version). In section 3 we prove Theorem 3.1, whose purpose is to give a 

method for verifying the condition of the weak patchworking theorem. Finally, 

section 4 presents two examples illustrating the patchworking procedure. One 

of the examples is a generalization of the result of Chiantini and Ciliberto [3] 

to the case of arbitrary simple singularities, and another example illustrates the 

advantage of the strong patchworking theorem over the weak version. 

We consider further examples and applications in [20]. It includes the fol- 
lowing topics: new bounds for the existence of singular curves with prescribed 

singularities on algebraic surfaces, description of a natural space of deformations 

of curves with non-isolated singularities, and an extension of the patchworking 

procedure to the case of non-transversal boundary conditions. 

ACKNOWLEDGEMENT: The authors are very grateful to Joseph Bernstein and 

Oleg Viro for helpful discussions. 
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2. T h e  g e o m e t r i c  p a t c h w o r k i n g  

2.1 T w o  EXAMPLES. Let us explain the idea of the patchworking. Assume 

that  we are given a surface E and a finite set P of singularity types. Consider 

a parti t ion of P:  P = [.J P~. Assume in addition that  we can degenerate our 

surface E into a union of some other surfaces E ~ and on each E i we have a curve 

C i having singularities exactly of types S E pi .  Then, under appropriate condi- 

tions, one can "glue" these curves into a curve on E preserving the singularities. 

We can reformulate it as follows: We start  with the following initial data. 

�9 A family of projective surfaces 7r: X -~ T, with an irreducible connected 

general fiber Xt and a reducible closed fiber Xo = U El, 

�9 A family of line bundles s on Xt,  or equivalently a line bundle s on X,  

and 

�9 A singular curve Co = U Ca c U Ei (with given types of singularities) 

defined by some section ~o E H~ s 

Then, if the initial patchworking data satisfy some properties (see the next 

section for explicit definitions) we can construct a deformation Ct C Xt  of Co 

preserving the singularities of Co. Let us present two typical examples of the 

patchworking data: 

Example 2.1: First we define the family of surfaces. Consider ~: ]?2 x ~1 ~ ~1. 

Let Z l , . . . , z k  E ~'-1(0) -- ~2 be distinct points. Define X to be the blow up 

o f  ~2 X /I ~1 along z l , . . . ,  zk E ~-1 (0). Thus our family is given by 7r: X --+ ~1. 

Now we shall define the family of line bundles. Consider 

/2  : | Ox( -miE1)  |  | Ox(-mkEk) ,  

where ~r~,2: X -+ ]?2 is the natural projection, and d, r n l , . . . , m k  E N. Last 

we have to present the section. On each exceptional plane E i we choose a 

curve C~ of degree mi having exactly one singular point of some type S ~ and 

intersecting E i M E ~ transversally at mi different points P~,.. �9 ,pm~i. On the 

blown up plane E ~ we choose a curve C ~ of type dL - ~ki= 1 rni(E i N E ~ such 

that  C ~ M E i C a N E ~ m, i = = U j = I  P~" We choose a section ~0 E H~ to be 

any section defining the curve Co = U c~ (any two such sections differ only by 

a multiplicative scalar). 

The next example represents the original Viro's gluing procedure [27]. 

Example 2.2: Consider the triangle A = {(0,0),(d, 0), (0, d)} C ll~ 2 and its 
k A i subdivision A = U~=I into a union of convex polygons with integral vertices. 

We assume that  the subdivision is convex, i.e., there exists a convex continuous 
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piecewise linear function v: A ~ ~ whose linearity domains are exactly A i, i = 

1 , . . . ,  k, and u(Z2MA) C_ Z_. Consider the convex hull ~ of the polygon A and 

the graph Graph(u) in 1~3. We define X to be the toric threefold corresponding 

to ~E. 

Adding the undergraph of v to 2, we obtain the polyhedron ~ = A • ( -co ,  0]. 

Tile corresponding toric threefold ~- = ]?2 • (1?l\(point}) embeds into X as 
k the complement to Xo ~- lJi=l T~ = (.jk i=1 Zi, the union of the divisors, 

determined by the faces of Graph(u). The projection X -4 ]?1\{point} extends 

up to a projection X -+ T = ~1 with the central fibre Xo and other fibres 

isomorphic to p2. We define /2 = L:(S) to be the tautological line bundle of 

the toric variety X = Tor(F.). Then/ : lx t  ~ Op2(d) for t r 0 and /:1~ is the 

tautological bundle of Zi. The last ingredient of the patehworking data  to be 

chosen is a section ~o E H~ L:0). We refer to [22], [27], [24] and [16] for 

concrete examples. 

2.2 THE PATCHWORKING DATA. 

CONVENTION 2.3: In this paper we work exclusively over C, which, by the 
Lefschetz principle, can be replaced by any algebraically dosed field of charac- 
teristic zero. 

Consider the following data: 

�9 A one-parameter flat family of projective surfaces 7r: X ~ T over a smooth 
base T, 

�9 A family of invertible sheaves/:t  on X~ = 7r-l(t), i.e., an invertible sheaf 

/2 on X (up to a twist by 7r*.T where ~ is a line bundle on T), and 

�9 A section ~o E H~ L:0) (the zero set of ~o is exactly the set of curves 

we are going to glue up). 

Assume that  our data  satisfies the following properties 

X1. Xt is reduced and irreducible for any t r 0, where 0 E T is a distinguished 

point. 

X2. Xo = [.jk ~i is a union of reduced and irreducible surfaces such that  

dim(Z / M Z j M E k) = 0, for any three distinct indices i , j ,  k. 

IIk Ci Notation 2.4: We denote the zero set of ~o by Co. Then Co = ~i--1 o, where 

C~ = C o n ~  ~. 

$1. Co has only isolated singular points and all these points are smooth points 

of X. If p E Sing(Xo) M Sing(Co) then p E ~i M ~J for some i , j .  
$2. C~ are reduced. 

$3. Co M E i n ~J is reduced for any i r j .  
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$4. Co M E i f) E J gl E k -- 0, for any three distinct indices i , j ,k .  
$5. For any p E Co M E i M E j, there exists an open analytic neighborhood 

p C U C X such that X0 Cl U C U is a quasi -normal  crossing divisor; 

i.e., either it is a normal crossing divisor or the pair U --+ U~(0) C T is 

isomorphic to an open analytic neighborhood of 0 of the pair 

Spec C[x, y, z, t]/(xy - t t) ~ Spec C[t] 

for some positive integer l. 

Remark 2.5: It is important that the last condition is stable under base change 

since, clearly, any one-dimensional base change replaces the exponent 1 of t in 

the above formula by another exponent. 

It is easy to see that the two examples we considered in the introduction satisfy 

all the properties X1, X2, S1 - $5. To formulate the patchworking theorem we 

need several notations 

Notation 2.6: Let n(i) be the number of the singular points of C~. We denote 

these singular points by P~, "" ",Pn(/)/ and their singularity types by Sj = S(p~), 
j = 1 , . . . ,  n(i). The types Sj can coincide for different j.  

Notation 2. 7: Let 5[p} C Oxo,p ~ be the equisingular/equianalytic ideal of the 

singular point p~. We denote by iT the equisingular/equianalytic ideal sheaf 

of the zero-dimensional scheme Z, concentrated at Ui,jP} c xo, which is de- 

fined locally at p} by the ideal Z.p} (for the precise definition of the equisingu- 

lar/equianalytic ideal we refer to [6], Section 1). 

2.3 WEAK PATCHWORKING THEOREM. We start with the patchworking data 

(and notations) from the previous section, namely, we are given: 

�9 a family of surfaces ~r: X ~ T, 

�9 a line bundle s 

�9 a section ~o E H~ s 
satisfying all the properties X1, X2, S1, $2, $3, $4, $5 from the previous 

section. Now we can formulate the main result 

THEOREM 2.8 (Weak Patchworking Theorem): Assume that 

(1) HI(Xo,Z  | s = O. 

Then there exists some open neighborhood U~ = U~(O) C T and a family of 
.f ~ i  ~ l <i<_k curves Ct G It;tI, t E U~, having ~ i  n(i) singular points of types t~jjl<j<_n(i), 

respectively, as their only singularities. 
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Remark 2.9: (i) T is a smooth curve and ~r is projective, hence ~r,s is a direct 

sum of a locally free coherent sheaf with a torsion sheaf, but ~r is flat and s is 

invertible, thus the torsion part of 7r,s is zero. Hence 7r,s is a vector bundle 

on T. 

(ii) Condition (1) implies Hi(X0,  s = 0. Hence for any t E T close to 0 E T, 

the canonical map 7c,s | k(t) --+ H~ s is an isomorphism. 

Remark 2.10: Twisting s by ~r*5 r,  where 5 r is a very big line bundle, we can 

assume that  the global sections of ~r, (s generate its fibre at any point t E T. 

Such a twist does not change the fanfily of line bundles on the fibres, so we can 

assume that  

reso : H~ f-.) --+ H~ s 

is surjective. Moreover, due to the previous remark, we can choose a subspace 

H C H~ s such that  the restriction map 

rest : H ~ H~ s 

is an isomorphism for all t in some open neighborhood Uc(O) of O. From now 

on we will identify H with H ~ (Xt, s for small t. 

2.4 THE PROOF OF THEOREM 2.8. 

Notation 2.11: Let Mo denote the germ at ~o of the equisingular/equianalytic 

family of sections a E H~ s having exactly )~i n(i) singular points of 
I . r  l l ~_j~_n(i) topological/analytic types t '- 'jJl<i<k �9 

To prove Theorem 2.8 we will need the following 

LEMMA 2.12 (Main Lemma): Assmne that 
1. Mo is smooth, 

2. codim(Mo C_ H~163  is as expected (i.e., equal to the sum of the 

codimensions of the equisingular/equianalytic strata of the singularity 
l .qi(l<-i<- k 

types t'-'j J 1 ~j~n(i) ]" 
Then there exists some open neighborhood U~ = U~(O) C T and a [amily of 

S r  l ( i ( k  curves Ct E ]s t E U~, having ~ i  n(i) singular points of types t'-'jh~j~n(i), 
respectively, as the/r only singularities. 
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Proof 

STEP 1: First, we construct a deformation Mt C H x {t}, t E Us(0) of M0 C 

H x {0}. Let P] be a singular point of C~. Consider a small analytic neighbor- 

hood I,~(Pj) x U,(0) C X o f P j ,  V~(Pj) C Xo and U,(0) C T, and introduce lo- 

cal analytic coordinates x, y, t centered at Pj.  We. can assume that s215 

is trivial. Thus res x ..... ~ . . . (H)  x, o = reSv.(Pj)x{t}fg (Xt,s C C[[x,,Jl] pro- v , t ~ ) , . l ~  1. 
vides us with a family of subspaces of fixed (finite!) dimension. Consider 

ESFj C C[[x, y]] the germ of equisingular/equianalytic stratum of $(Pj). Then 

Mo : i l(res, d,'j)x(o )-'(ESFJ) c H~ Co) H. 
i , j  

We define Mt to be Nid(resX'(pj}x{,})-' (ESF)) C H~ s ~- H. 

STEP 2: Second, we prove that dimMt = dim M0. We know that Mo is 

smooth and codim(Mo) is expected. This implies: 

�9 The intersection ESFj n res x ,p , ,  - . (H) is transversal. Itence the inter- ~( i )xtO} 

section ESF)M res x "P 'x  "r (H) is also transversal. a t  ~ ~ t 
�9 The intersection Ai,j(l'CS~~ C H~163 transver- 

sal. Hence, for small t, the intersection ni,j(res~'(pj,)x{t})-l(ESFj) c 
H~ s is transversal as well. 

It follows now that dim Mt = dim Mo _> 0. Hence there exists a deformation 

Ct E Is of Co E Is such that  for any t small enough the curve Ct has singular 
I,~ill<_i<_ k 

points of types t~,jll<_j<_7~(i). 

STEP 3: Last, we show that  the curve Ct has no other singularities except 
.qi I 1 <_i<k ~'jJl<_j<_n(i)" Consider sufficiently fine open covering 

co:U ' Uw  0 , 
i j  i j a  13=1 

where Vf is a small neighl)orhood of tile singular point of type P~ Wa/j are 3~ 

small neighborhoods of the points z~ E Co n E i M EJ and U~ does not intersect 

some small neighborhood of singular points of Co. Choose a small equisingular 

deformation Ct E Mt of Co as above. Then, for small t, 

r 

c, U 'uUwu U 
i j  i j a  ~=1 
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It is clear that  if t is small, then Ct fl U~ is smooth for any 8. Let us show 

that  Ct N W~ j is also smooth. If W ij is small enough, we can choose local 

coordinates x, y, z in W/j in such a way that  our family of surfaces is given by 

xy = t I (Xo C X is a quasi-normal crossing divisor in the neighborhood of z~) 

and the family Ct is given by z + t I �9 f (x ,  y, z, t) = 0 for some f C C[[x, y, z, t]] 

(this follows from the condition $3). Now it is obvious that  Ct M W ij is smooth 

for t r 0 if W~ j is sufficiently small. To show that  Ct M Vj i has only one singular 

point we will use the following well-known claim. 

CLAIM 2.13: Let V C C 2 be a small disc, and let Co C V be a curve with 

isolated singular point at the origin and no other singularities. Consider a small 

deformation Ct of Co. Then 

<  v(Co), 

where pv(C)  is the sum of Milnor numbers of singular points of C in V. 

Now we can finish the proof. We can choose Vj i in such a way that  Vj i ~ U~ (0) 

C T is a trivial fibration (i.e., Vj ~ ~- V x U~(0)). Ct has a singular point in 

Vj ~ M Xt - V of the same type as Co, so it follows from Claim 2.13 that  Ct has 

no other singularities in Vj i. | 

Now Theorem 2.8 follows from the Main Lemma. Indeed, along the gen- 

eral deformation theory, the eohomology vanishing hypothesis (1) of Theorem 

2.8 implies the unobstructedness of the equisingular/equianalytic deformations 

together with the smoothness and transversality of intersection of the corre- 

sponding equisingular/equianalytic strata mentioned in Main Lemma (el. [5], 

Proposition 3.7 and Theorem 6.1(ii), and [6], Theorem 3.6(b), where the as- 

sumption on the smoothness of the ambient surface can be replaced by the 

assumption that  the curve singular points, which are traced in the deformation, 

lie outside the singular locus of the surface). | 

2.5 STRONG PATCHWORKING THEOREM. In this subsection we would like to 

present a stronger version of the patchworking procedure which turns out to be 

very useful in some applications. 

It is easy to see that  for all t r 0 small enough, the natural map Ir, E|  

H~ f-.t) is an isomorphisnl, and for t = 0 this map is injective. Assume that  

the curve Co is given by a section ~o E Im(rr,s174 q H~ L;o). Modifying 

Notation 2.11 we define No to be the germ at Co of equisingular family of 

sections a E Im(Tr, EQk(0)) having exactly ~ i  n(i) singular points of topological 
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l .~i I 1 ~j<_n( i) (analytic) types t~,jjl<i<k . Now replacing Mo by No and repeating word by 
word the proof of the Main Lemma one can prove the following 

LEMMA 2.14: If  

1. No is smooth, 

2. codim(N0 _C Im(Tr,s | k(0))) is expected., 

then there exists some open neighborhood U~ = U~(O) C T and a family of 

iSi~l<~<k curves Ct E [s t E U~, having y]in(i) singular points of types t j J l ~ j ~ n ( i ) '  

respectively, as their only singularities. 

Now we can present the Strong Patchworking Theorem. As before, we start 

with the patchworking data (and notations) from Section 2.2, namely, we are 
given 

�9 a family of surfaces 7r: X -+ T, 

�9 a line bundle s 

�9 a section ~o E H ~ s 

satisfying all the properties from Section 2.2, namely X1, X2, S1, $2, $3, $4, 

$5. 

THEOREM 2.15 (Strong Patchworking Theorem): Assmne that 

T1. ~o E Im(Tr,s @ k(0)), 
T2. the natural map HI(Xo,Z  | s --+ HI(Xo, s is an isomorphism, and 
T3. the intersection H~ Z|163174 ) C H~ s is transver- 

sal. 
Then there exists some open neighborhood U~ = U~(O) C T and a family of 

i$i l ~ <i<k curves Ct E Is t E Ue, having ~ i n ( i )  singular points of types t jll<j<n(i), 
respectively, as their only singularities. 

Proof: Consider the exact sequence 

H~163 -~ H~ Oz) --+ HI(x0 , I |  -+ Hl(Xo,s 

where the zero-dimensional scheme Z C Xo is defined in 2.7. Then condition 

T2 implies the surjectivity of H~163 -+ H~ COz), the latter space be- 

ing T~o,Sing(Co)\Sing(Xo) , and hence we get the smoothness of the germ of the 
equisingular deformation of Co (cf. [5], section 2.3). Moreover, it follows that 
the codimension of this germ is the expected one. Conditions T1 and T3 im- 

ply that the intersection of the germ of the equisingular deformation of ~o with 

I m ( r , s  | k(0)) is non-empty and transversal in H~163 Hence this in- 

tersection is smooth and has expected dimension as well. Now we can apply 

Lemma 2.14, and the result follows. | 
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3. A useful  t h e o r e m  

Next we will give sufficient conditions for (1). Consider the set V : {Ei}i=lk 

and the set E = {ex,v = xMylx,  y E V, d im(xMy)  = 1}. Let F be any connected 

oriented graph without cycles for which the set of vertices V(F) is equal to V 

and the set of edges E(F) is equal to E. For any 1 < i < k, we introduce 

�9 the set E i of the intersection lines e = E i M E j,  j # i, corresponding to 

the edges of F directed out of E i, 

�9 the line bundle 

e E E  i 

THEOREM 3.1: Assume that, for any i -= 1 , . . .  ,k, 

(2) H1(~i,271~ , | f..ir) = O. 

Then (1) holds true. 

Remark 3.2: Besides keeping prescribed singularities in the patchworking con- 

struction, one can also preserve the tangency to certain curves. Namely, in the 

above notation, let C' -+ T,  C' C X ,  be a fiat family of curves such that  C~ M Co 

is finite and non-empty. Let I(  C C~ M C0\(Sing(Co) U Sing(C~) U Sing(Eo)), 

K # 0. Then we impose the requirement that  each point z 6 K extends up to 

a section z(t) 6 C[, z(0) : z, t 6 T, such that  the intersection number of Ct 

and C[ persists: 

(Ct.C~)z(t) = (Co" C~)~, t E T. 

To satisfy this requirement we modify conditions (1), (2) by replacing Z with 

27 | Z', where 27' is the ideal sheaf of the zero-dimensional scheme concentrated 

at K and defined by ideals 

z K. 

3.1 PROOF OF THEOREM 3.1. To prove the implication (2) ~ (1) we shall 

use the following 

L EMMA 3.3: Assume that we are given a reducible algebraic surface Y : W U Z 

such that D = W M Z is a divisor on both W and Z. Let f be a quasicoherent 

sheaf on Y satisfying 

H (W,71 ) : 00z(-D)) -- O. 
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Then H 1 (Y, .T) = O. 

Proof Consider the exact sequence of sheaves on Y 

0 -+ ~rZ(Z'lz |  9r--+ 7rw(Srlw ) --+0 

and its exact cohomology sequence 

1 Z H (Y, Tr, (9~lz |  , H~(Y,.T) > HI(y,  Tr,w(.T'Iw)) 

II II 
Hl(z,J:l  | Oz(-D)) 

0 0 

From the exact sequence we see that  H 1 (X, ~') = O. | 

Next we notice that  the graph F defines a partial ordering on the set of 

components of X0. We can complete this ordering to a linear order. So we can 

assume that ,  for any eij E E ~, the inequality j > i is satisfied. We will use the 

following 

Notation 3.4: For any 1 _< m _< k, the surface uim=l E i C X0 will be denoted 

X~ n, and the quasicoherent sheaf 

i~_m j > m  

on X~ ~ will be denoted Z "m. 

Now we proceed by induction, proving that H I ( X ~ , Z  -rn) = 0 for any 

l _ _ < m < k .  If m = 1 there is nothing to prove, since HI(X~, iT 1) = 
H I ( E 1 , Z | 1 6 3  Assume that  we proved H I ( X ~ , Y  :m) = 0 for some 

1 _< m < k. Let us prove it for m + l .  X ~  +1 = X ~ U E  m+~, so applying 

Lemma 3.3 for Y = X ~ + I , Z  = X ~ , W  = E m+l it is enough to prove that  
gl l [  y 'm qcm+l ~ ~'~m+l))  

�9 11  ~ , o  , -  f : , ; , ,  ~ Ox;,, ( - X ~  n = O, 
Hl(Em+i yzm+l ~ = O. 

�9 \ , IEm+l ] 
But the first equality is just the induction assumption. And the second equality 

9r,~+l s H 1 is given since I~,,~+~ = 27| . So (Xo,~|163 = HI (X~ ,J  :k) = 0. This 

completes the proof of the theorem. | 
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4 .  T w o  e x a m p l e s  

In this section we would like to present two examples (Theorem 4.2 and Theorem 

4.5). The first example is all application of the patchworking, which generalizes 

the result of Chiantini and Ciliberto [3]. The second example illustrates a case 

where the strong version of patchworking could be applied and the weak version 

could not. We should mention that Theorem 4.5 was first proven in [17] by 

tedious direct computations. 

4.1 THE FIRST EXAMPLE. 

Definition 4.1: Let k be a positive integer. We define two sequences ak(n) and 

tk(n)  recursively as follows: ak(1) = - k ,  ilk(l) = -3 ,  and 

ak(n + 1) = ak(n) + ak(1) -- (n + 1), 

(n + 1) 2 (n + l)ak(1) + ik(1). #k(n + 1) = #k(~) - k + 

THEOREM 4.2: Let k be a positive integer. Consider a generic surface En E 

[Op3(n)]. Then for any integer d, and any list W of simple singularity types* 

satisfying 

(3) #(S) <_ k for any S E W, 

and 

n d  2 
(4) ~ #(S) <_ - - ~  + ak(n)d + ~k(n), 

S E W  

there exists a curve C E [O~,, (d) l having W as its set of singularities. Moreover, 
- H (~n,Z~ (d)) = O, where Z& s denotes the equisingular Hl(En,Z&S(d 1 ) ) =  1 e s  

ideal of the singularities os the curve C. 

Remark 4.3: 
1. It follows from the definition that 

ak(n) = - k n  - n(n + 1) 
2 ' 

k n(n_ +1) n(n + l)(2n + l) ~k(n) ~ ~ ~3 + k) + 
2 + 12 

2. Theorem 4.2 provides us with an asymptotically optimal result, since 

dim I 0 ~  (d)l = nd2 /2 + O(d). 

* Any type can appear several times. 
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Proof: The proof is by induction on n. For n = 1 the statement was proven in 

[21]. Assuming that the statement holds for n, let us prove it for n + 1. To do 

this we shall degenerate En+l into a union I? 2 U En and use patchworking. 

Consider a generic surface ~n of degree n and a generic plane 17~. Choosing 

an arbitrary smooth surface ~n+l of degree n + 1, we construct the pencil 

s .  (17~ U En) + t .  ~n+l; (s : t) E ]71, which provides us with the flat family of 

surfaces X --+ ]?1, having 17~ U En as its central fibre, and having smooth generic 

fibre. To obtain the family of line bundles on X we just pull back the sheaf 

Op3(d). 

Next, we shall construct the curve in the central fibre. Consider a partition 

of W = WI U W2 satisfying 

nd 2 
0 <_ ~ + ak(n)d + 3k(n) -- E p($) <k"  

SEW1 

Such a partition exists due to condition (3). It follows (by the definition of 

ak(n) and/~k(n)) that  

, ( s )  < ( d -  n - 1) 2 
- 2 + ak(1)(d-- n- -  1) + 3k(1). 

SEW2 

Applying the induction assumption to the pair (~n, W1), we obtain a curve 

C1 C I OE,, (d)l having W1 as its set of singularities. By generality of 1702 we 

can assume that  the intersection C1 N 17O2 is transversal. Moreover, we can 

assume that  the intersection C1 M 17o 2 is generic.* Next, due to [21], we can 

choose a curve C2 E IO?~(d)l having W2 as its set of singularities and satisfying 

H1 (~2 -res ( d - n  - 1)) = 0. Moreover, varying C2 in its equisingular family and 

restricting it to En N 17O2, we can obtain any generic element in ]O~.n~02(d)l (the 

proof is exactly the same as before). Hence we can choose C2 in such a way that  

C2 M 2n = C1 M 17~, or, in other words, in such a way that  the union C1 U C2 is 

given by a section of O~,,uP02 (d). 

Now, applying the weak patchworking theorem and Theorem 3.1 (twice), we 

derive the existence of a curve C E IO~,+l(d)] having W as its set of singu- 

larities. The hi-vanishing part follows from the semi-continuity of cohomology, 

and from the appropriate hi-vanishing on the reducible surface E~ U 1702. I 

* H~ Zb~ (d)) = 0 is the tangent space to the equisingular deformation of C1. 
We know that H 1 (En, Z~ (d-  1)) -= O, hence the natural map H~ Z~ (d)) -+ 
H~ M 1?2, Op3(d)) is surjective, which implies the required statement. 
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4.2 THE SECOND EXAMPLE. To present the second example we will need the 

following definition 

Detinition 4.4: Let S be a type of plane curve singularity (either topological 

or analytic), and let C C p2 be an algebraic curve. We say that  C is a good 

representative of S if 

�9 C has exactly one singular point of type S as its only singularity, 

�9 the germ V C IO•2(deg(C))l of the equisingular/equianalytic s t ra ta  of C 

is smooth of expected dimension (i.e., minimal possible). 

Define s(S) to be the minimal integer, such that  there exists a good repre- 

sentative C of the singularity S of degree deg(C) = s(S). 

Assume that  we are given a projective algebraic surface E and a curve C C E 

satisfying: 

�9 C has exactly r singular points z l , . . . ,  zr, and those are smooth points of 

E. 

�9 All the singular points of C are ordinary multiple points of the multi- 

plicities m l , . . . ,  mr. 

�9 The germ at C of the equisingular deformation Vio~(c)l(ml,...  ,mr) is 

smooth and has expected dimension. 

�9 C is a generic element* of the linear system of curves in IO~.(C)l passing 

through z l , . . . ,  zr with multiplicities m l , . . . ,  mr. 

Then the following statement holds. 

THEOREM 4.5: Let $1 , . . . ,  S r be topological types of plane curve singularities. 
Assume that s(S i) < mi for all i. Then there exists a small deformation Ct, 

t E D~(O) of C such that for any t ~ O, Ct has exactly r singularpoints of types 
$1 , . . . ,  S r as its only singularities. 

This theorem was first proven in [17] by tedious direct computation. Here we 

present a geometric proof based on tile patchworking techniques. 

Proof: We shall use a generalization of the patchworking pat tern presented in 

Example 2.1. Define X = Blzl • ..... z~• x p1) to be the blow up of the trivial 

family E x p1 at tile points zl x 0 , . . . ,  zr x O. Then X admits natural  projections 

7r: X --+ p1 and a: X ~ E, and the zero fibre of 7r satisfies Xo ---- Ui=0r Ei ' where 

E ~ is the blow up of E at zl . . . .  , zr and, for any i > 0, E i = Ei is the exceptional 

* This assumption is not necessary, but it simplifies slightly the proof of Theorem 
4.5. 
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divisor corresponding to the point zi • 0. Define 

r 

s : a*O~(C) <9 @ Ox(-miE~). 
i=I 

Now it is important to mention that  if 2dim IO~(C)I < Ei%l mi(mi  + l), then 

the dimension h~ jumps at t = 0[ Hence one cannot use the weak 

patchworking theorem. However, the strong version of the patchworking is still 

applicable in this case. 

To complete the patchworking pattern we have to construct a curve D E ]s 

satisfying certain properties. As the first step we consider the curve Co = 

X0 M C x (p1 _ {0}), and denote by C~ the intersection Co M E ~. Then C ~ 

is the proper transform of C, and C~ are collections of lines through some 

points qi 6 E i, i = 1 , . . . , r .  Consider the equisingular (i.e., equimultiple) 

family V c o ( m l , . . . , m r )  C H~163 Then Co belongs to the intersection 

Vco(ml,... <9 k(0)). 

CLAIM 4.6: Tile intersection Vco(ml,...,mr) M (7r.s <9 k(0)) is transversal 

at Co. 

CLAIM 4.7: Let S be a plane curve singularity type (either topological or an- 

alytic), and let L C ]p2 be a straight line. Denote m = s(S) + 1. Then, for 

any set of m distinct points Pl , . . . , Pm E L, there exists a good representative 

D 6 1(.9p2(m)l of the singularity type S, satisfying D M L = Uiml pi. Moreover, 

the map H~ 2, IDs/ea(m)) --+ H~ OL(m)) is surjective. 

We postpone the proofs of the claims and finish first the proof of the theorem. 

Let D 1 , . . . ,  D r be good representatives of the singularity types 8 1 , . . . ,  St ,  such 

that  D i M E ~ = Co o M E i (tile existence of such curves follows from Claim 4.7). 

Thus the curve D = Co o U D 1 U .-. U D r belongs to the linear system [s 

Consider the irreducible equisingular family VD(S1, . . . ,  S r) containing the curve 

D. This family is smooth, and it is invariant under the action of the group 

G = 1-[[=1 G~, where G ~ denotes the group of automorphisms of E i, acting 

trivially on E ~ M E i. Hence its closure contains the variety Vco(ml , . . .  ,mr).  

By Claim 4.6 the intersection Vco ( m l , . . . ,  mr) M 0r . s  {9 k(0)) is transversal at 

Co. Consider a G-equivariant Whitney stratification V D ( S 1 , . . . , S  r) = W0 D 

W1 D . . . .  We can assume that  there exists i such that  W{ C Vco(ml , . . .  ,mr)  

is dense. Then Co E W,i due to our assumption on generality of C. Thus 

the intersection VD($1, . . .  , S  r) M 0r . s  <9 k(0)) is transversal at any point C' 6 

VD($1, . . .  ,S  r) D (~r.s | k(0)) sufficiently close to Co. 
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Now we can apply the strong patchworking theorem to the patchworking data 

(X -+ F~, s D). Condition T1 is satisfied by the construction of D. Condition 

T3 follows from the transversality of VD($1,... ,8  ~) N 0r ,s  | k(0)) at D. Thus 

it remains to prove that condition T2 is also satisfied. Let/7 be the equisingu- 

lar/equianalytic ideal of the curve D. Consider the exact sequence of sheaves 

Z| 
i>o  i>o 

By Claim 4.7 the map (~i>0 H~ Z| (s --+ ~)i>0 H~ Xo, (s is 
surjective. Hence the natural map 

HI (Xo ,Z |  s -~ ~ H i ( X o , Z  | (s = HI( E~ (s 
i>o  

is an isomorphism (the last equality follows froln the fact that D i are good 

representatives of the corresponding singularity types). Similarly, considering 

the exact sequence 

o - ,  - ,  o 
i>0  i>0  

and its long exact sequence of cohomology we obtain the natural isomorphism 

H 1 (Xo, s --+ H 1 (E ~ (s which implies condition T2, namely the natural 

map H 1 (Xo,/: | s --+ H 1 (Xo, s is also an isomorphism. | 

Proof of Claim 4.6: It is enough to show that 

H~ | s + (7r,s | k(0)) = H~163 

which is equivalent to surjectivity of the map 7r,s | k(0) -+ H~ Oz~,(Co)). 
Consider the scheme Z = Zes(C) x (F1 _ {0}) C X. Then ZeS(Co) = ZQk(O). 
The dimension of OZ| is constant, thus the sheaf lr, Oz is locally free and 

the natural map ~r, Oz | k(t) ~ H~ Oz| is an isomorphism. It is clear 

that the map 7r,s | k(O) --+ H~ factors through r, Oz (9 k(O). 
Thus it is enough to prove that the map 7r,s | k(t) --+ 7r, Oz | k(t) is surjective 

for all t. 

For t # 0, this is equivalent to the assumption that the germ at C of the equi- 

singular (i.e., equimultiple) strata is smooth and has expected dimension. Now 

one can easily derive the surjectivity for t = 0 by a straightforward computation 

(in local coordinates near the points zi) using the fact that Z is a trivial family 

of zero-dimensional schemes. We leave this computation to the reader. | 
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Proo f  of  Claim 4.7: We will prove the claim using Theorem 2.8. Let z E ]?2 be 

a generic point. Define X to be the blow up of ]?2 x ]?1 along the point z x 0, 

and along the lines Pi x 171 i = 1 , . . .  ,m. Then X admits natural projections 

a: X --+ ]?2 and 7r: X --+ ]71. Denote the exceptional divisors corresponding to 

the lines Pi x 171 by E/,  and that  corresponding to the point z x 0 by E ~ We 

should mention that  the zero fibre X0 of our family X is the union of the plane 

E ~ with the blow up ]?2 of]?2 x 0 at z , p l , . . . , P m .  

The second ingredient of the patchworking pattern is the line bundle s which 

is given by 

= a*(O~,2(m)) | O x ( - ( m  - 1)E ~ | 6 0 x ( - E i ) .  
i----1 

To complete the patchworking pat tern we shall find the curve Co E [s 

Since s (S)  = m - 1 we can choose a good representative C ~ E [s of the 

singularity type $. Without  loss of generality we assume that  C ~ V/]?2 consists 

of m - 1 distinct points, such that  none of these points belongs to any straight 

line connecting E ~ with E/,  i = 1 , . . . ,  m. Thus one can extend C ~ up to a curve 

Co E [s by a smooth curve C 1 C ]?2. 

It is easy to see that  the patchworking pattern constructed above satisfies all 

the properties X1, X2, S 1 , . . . ,  $5. So, to finish the proof, it remains to verify 

(1). We shall do this using Theorem 3.1. It is enough to prove that  

H l ( E ~  and Hi(]? 2 , s 1 7 4  ~  

The first equality holds, since C ~ is a good representative of S. To prove the 

second equality we observe that  

H 1 (172, s | O ( - E  ~ n ]?2)) = H i (]72, y o n  _ 1)), 

where J is the sheaf of ideals of the zero-dimensional scheme of fat points 

z m-1 U pl U .. �9 U Pro. We show, by induction on m, that  the last group is zero. 

For m = 1 the statement is obvious. To make the induction step we shall 

consider the exact sequence 

0 --+ J l ( m  - 2) --+ J ( m  - 1) --+ OL(--1) --+ 0, 

where ,71 is the sheaf of ideals of the zero-dimensional scheme of fat points 

z m-2 Up1 U . . .  Upm-1,  and L is the line passing through z and Pro. Now, the 

required hKvanishing follows from the Riemann-Roch theorem because of the 

induction assumption. 
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To summarize: we proved that  for any t, small enough, there exists an irre- 

ducible reduced curve Ct C [s having exactly one singular point of type S as 

its only singularity. Consider a(Ct) C F 2. It is a curve of degree m passing 

through P l , . . . , P m  and having exactly one singular point of type S as its only 

singularity, a(Ct) is a small deformation of Co, thus it is a good representative 

of S. 

To prove the 'moreover' part, it is sufficient to show that  

H1(~2, es/ea I~, ( m - l ) )  = 0  

for t small enough. C ,o is a good representative of the singularity type S, thus 
H 1 (I? 2, res/ea ~__ *c ~ t " ~ -  1)) = O. Hence Hl( I?2 , I c : / e~ (m-  1)) = 0 by the 

semicontinuity of the cohomology. | 
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